Visit **www.brpaper.com** for downloading previous years question papers of 10th and 12th (PSEB and CBSE), IKPTU,MRSSTU, PSBTE, PANJAB UNIVERSITY, PUNJABI UNIVERSITY, BFUHS, HPTU, HPSBTE, HARYANA DIPLOMA, MDU HARYANA

Bachelor of Arts 3rd Semester

Mathematics (Differential Equations - 1)

Time allowed: 3 Hours

I.

Max. Marks: 30

(3,3)

Note: Attempt five questions in all selecting at least two questions from each section. All questions carry equal marks.

UNIT-I

- (a) $IF \frac{I}{N} \left(\frac{\partial M}{\partial y} \frac{\partial N}{\partial x} \right)$ is function of x only, say f(x), then show that $e^{\int f(x) dx}$ is an integrating factor of Mdx+Ndy=0.
- (b) Given that the differential equation (3,3) $(2x^2y^2 + y)dx - (x^3y - 3x)dy = o \text{ has an integrating factor of the form } x^hy^k, \text{ find its general solution.}$
- II. (a) Solve:

$$xyp^2 - (x^2 + y^2 - 1)p + xy = 0.$$

(b) Solve the differential equation:

$$p = tan\left(x - \frac{p}{1 + p^2}\right)$$

III. (a) Obtain the primitive and singular solution, if it exists of the equation,

$$xp^2 - 2yp + 4x = 0.$$

- (b) Find the orthogonal trajectories of the family of coaxial circles $x^2 + y^2 + 2gx + c = (3,3)$ 0,where g is the parameter.
- **IV.** (a) Solve the differential equation:

$$\frac{d^2y}{dx^2} + a^2y = \sec ax.$$
(3,3)

(b) Solve:

$$\frac{d^3y}{dx^3} + 2\frac{d^2y}{dx^2} + \frac{dy}{dx} = e^{2x} + x^2 + x.$$

V. (a) Solve the differential equation:

$$x^{2}\frac{d^{3}y}{dx^{3}} + 3x\frac{d^{2}y}{dx^{2}} + \frac{dy}{dx} + \frac{y}{x} = \log x.$$

(b) Solve:

UNIT-II
$$d^2y \, dy \, y$$

(3,3)

$$(x+3)^2 \frac{d^2y}{dx^2} - 4(x+3)\frac{dy}{dx} + 6y = x$$

VI. (a) Solved by the method of variation of parameters:

$$(D^2 + 3D + 2)y = \sin e^x$$

- (b) solve $\frac{d^2y}{dx^2} 2\tan x \frac{dy}{dx} + 5y = e^x$ sec by the method of removal of first derivative,
- VII. (a) Solve:

$$x^{2}\frac{d^{2}y}{dx^{2}} - (x^{2} + 2x)\frac{dy}{dx} + (x + 2)y = x^{3}e^{x}$$

(3,3)

by changing the dependent variable.

(b) Transform the differential equation: $(\cos x)y'' + (\sin x)y' - 2y \cos^3 x = 2\cos^5 x$ Into the one having as independent variable where z=sin x and solve it.

VIII. (a)
$$\frac{dx}{dt} + \frac{dy}{dt} = 3x - 6y$$

(b) Solve:
$$D^2X - 3Dy + 4x = 0$$
 and $3Dx + D^2y + 4y = 0$ where $D = \frac{d}{dt}$ (3,3)